

Integrating 3D PV design and yield simulation: challenges and opportunities

dr. Imre T. Horvath

We are PVcase

Our focus on automation and accuracy from the earliest stages of planning, incorporating 3D topographical data points to simulate the actual location of the solar plant, allows our customers to be able to compete for and win more projects by delivering greater yields.

10GW+

Projects designed

500+ Clients

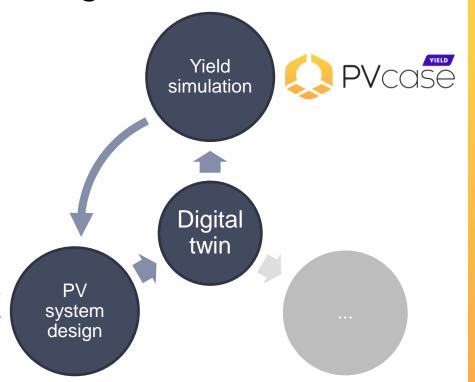
50+ Countries

Agenda

01 Digital interoperability

02

PVcase Yield


03 Bifacial PV simulation examples

04 Conclusions & Future dev

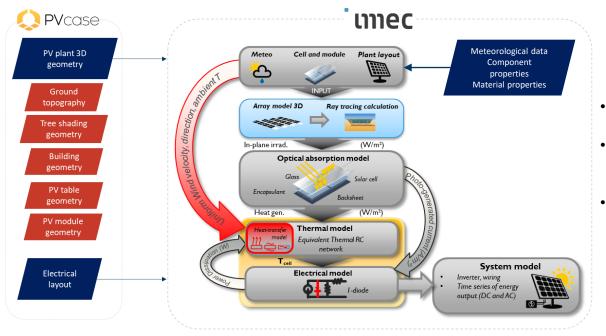
Digital interoperability in PV

PVcase: from design to Yield

- H2020 TRUST-PV project: interoperable digital twin needed
- Our view: Sharing the same digital twin across processes opens the door to process integration

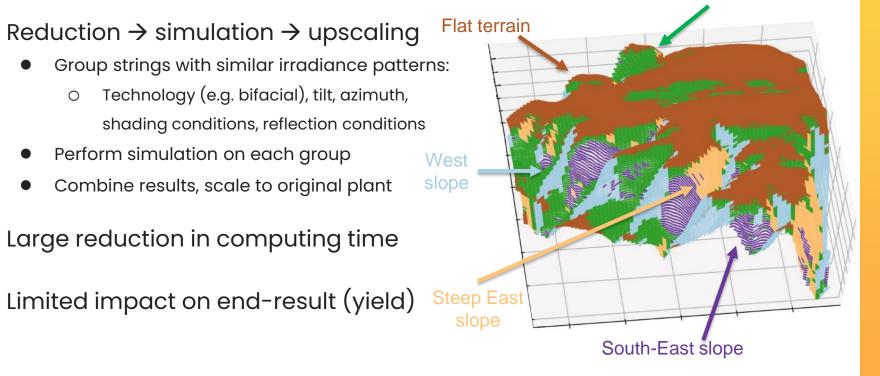
TRUST-PV consortium, "Building Information Model (BIM) requirements and design for the operational phase," Deliverable report, 2021. [Online]. Available: https://trust-pv.eu/wp-content/uploads/2021/10/TRUST-PV_T3p4_report_Final.pdf

Goals of integration

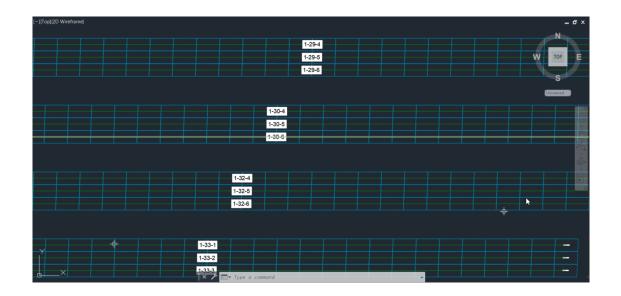

- Easy access to energy yield assessment in the engineering & design phase:
 - Unlock *energy yield* as a quantitative design variable
- Create technology-agile, software to drive PV technology innovation
 - Physics-based models (as opposed to empirical ones) have a large range of validity
 - 3D ray tracing enables bifacial irradiance simulations and extension to Agri-PV
 - Circuit-based electrical simulations enable mismatch simulation (non-uniformity)

Introduction to PVcase Yield

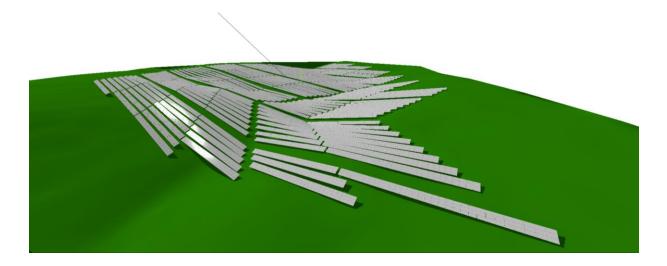
Technology background


• PV energy yield simulation software based on Imec's technology

- Optical simulations: ray tracing
- Thermal-electrical simulations: coupled, equivalent RC network
- ML-based model reduction algorithm


Model reduction algorithm

Slightly sloped

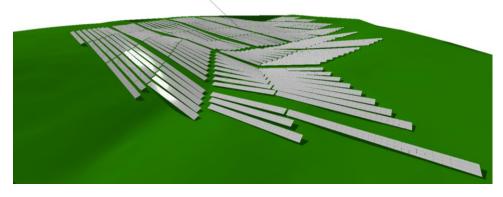

PVcase Yield main features (1/3)

- Import 3D PV plant models directly from PVcase Ground Mount
 - Varying readiness and detailing

PVcase Yield main features (2/3)

- Lighting simulation using 3D ray tracing
 - Effects of 3D frames, 3D terrain, arbitrary shading objects, reflection (bifacial)
 - First in industry for large-scale PV systems

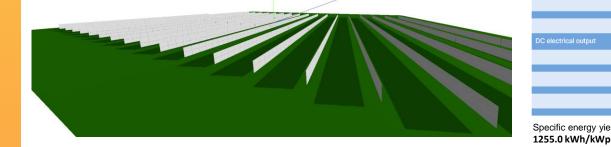
PVcase Yield main features (3/3)


- Thermal-electrical modelling at module-level resolution
 - Using electrical information (incl. cabling) designed in CAD
 - Or proposing optimal arrangements
 - Solved for each individual inverter and MPPT
 - Providing spatio-temporal performance and loss insight
- Cloud-based computing
 - No need for user-side supporting hardware resources and infrastructure
- Convenient user interface
- Product status: user trials

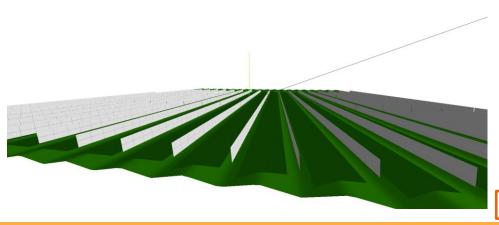
Case studies

Bifacial PV system simulations (1/4)

1462.9 kWh/kWp

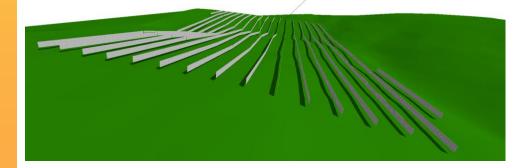

- Equator-facing, tilted bifacial PV
 - 3D simulation with hilly terrain
 - Detailed irradiance losses
 - Detailed electrical design
 - Simulated electrical mismatch loss

Bifacial PV system simulations (2/4)


- East-West-facing, vertical bifacial PV
 - Optionally without electrical design
 - Detailed irradiance losses
 - Loss caused by bifaciality factor (60%)
 - Shading losses (front+back) incl. ground shading
 - High reflection losses

osses						
Global horizontal insolation	9727.19 MWh		[%	MWh	
Ideal in-plane insolation	12317.53 MWh			+26.	63% In-plane	gain
				-0.	77% Horizon	shading loss
				-1	1.3% Bifacialit	y loss 🔶
			-	-6.	34% Front-sh	ading loss
				-5.	.21% Back-sh	ading loss
				-7.	08% Reflectio	on loss 🛛 🗲
				-53.	55% PV conv	ersion loss
Array nominal energy		1940.2 MWh				
				-3.	.01% Low ligh	t loss
				-1.	.81% Operatin	ig temperature loss
					0% Electrica	I mismatch loss
DC electrical output		1846.75 MWh			0% DC cabli	ng loss
				-0.	32% Inverter	self-consumption lo
				-(0.5% Inverter	efficiency loss
					0% Inverter	clipping loss
Specific energy yield						

Bifacial PV system simulations (3/4)


- Vertical bifacial PV + ground shaping
 - Causes losses in this particular case
 - Less ground-reflected irradiance

Bifacial PV system simulations (4/4)

- Vertical bifacial PV on hilly terrain
 - Assessment of loss due to terrain
 - East-facing slope
 - Module front side towards West (uphill)
- Comparison to flat terrain
 - Front shading loss
 - Back shading loss

Summary

Conclusions


- PVcase Ground Mount
 - Better PV plant designs, more accurate cost estimates, accelerated engineering process
- PVcase Yield
 - Energy yield simulation based on 3D ray tracing and physics-based models
 - Technology-agile software
- Integrating PV plant design and yield simulation through digital twin
 - Enable energy yield as design variable, provide quantitative inputs for decisions
 - Versatile, 3D simulations for large-scale, bifacial PV systems
- Next up
 - 3rd party due diligence, we are looking for partnerships

Future work

• Simulating **3D bifacial trackers** on uneven terrain, using shade-avoiding tracking strategies

Thank you

Imre T. Horvath imre@pvcase.com

visit pvcase.com