

SOLup

Bifacial Vertical PV System for Flat Roofs

Lars Podlowski and Bernd Litzenburger

Solyco Technology GmbH bifiPV Workshop 2022 – April 1, 2022

SOLYCO is a small group which is 100% dedicated to solar photovoltaics. We are experts in the field of solar technology since 1996.

Technology services

- Consulting
- Product development
- Scientific R&D projects
- IP management
 www.solyco.tech

Distribution of solar products

- Supply chain management
- Sales and marketing
- QM
- Customer service
 www.solyco.com

Introduction

- The team is working on bifacial PV products already since 2005. However, in early years we got stuck because of lack of bifacial solar cells
- We are working on vertical bifacial PV since 2016
 - Long-term project because of lack of industry experience
- Vertical bifacial PV is still a niche but it is getting more popular recently:
 - Several publications about the potential
 - Next2Sun (DE): commercial projects for agri-PV
 - Overeasy (NO): start-up for rooftop applications
 - Some special rooftop projects

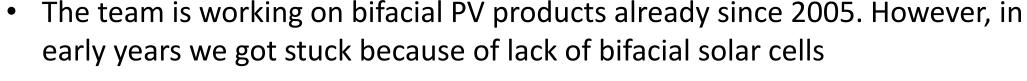
Introduction

- The team is working on bifacial PV products already since 2005. However, in early years we got stuck because of lack of bifacial solar cells
- We are working on vertical bifacial PV since 2016
 - Long-term project because of lack of industry experience
- Vertical bifacial PV is still a niche but it is getting more popular recently:
 - Several publications about the potential
 - Next2Sun (DE): commercial projects for agri-PV —
 - Overeasy (NO): start-up for rooftop applications
 - Some special rooftop projects

From /1/

Introduction

- The team is working on bifacial PV products already since 2005. However, in early years we got stuck because of lack of bifacial solar cells
- We are working on vertical bifacial PV since 2016
 - Long-term project because of lack of industry experience
- Vertical bifacial PV is still a niche but it is getting more popular recently:
 - Several publications about the potential
 - Next2Sun (DE): commercial projects for agri-PV
 - Overeasy (NO): start-up for rooftop applications \rightarrow
 - Some special rooftop projects



SOLYCO

ANY MAXXXXX

• The team is work:

Introduction

- We are working on vertical bifacial PV since 2016
 - Long-term project because of lack of industry experience
- Vertical bifacial PV is still a niche but it is getting more popular recently:
 - Several publications about the potential
 - Next2Sun (DE): commercial projects for agri-PV
 - Overeasy (NO): start-up for rooftop applications
 - Some special rooftop projects

SOLYCO

From /7/

SOLYCO

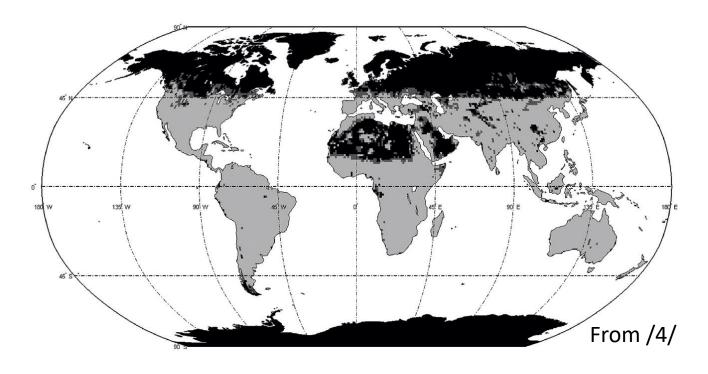
Test site #1: Forst (Germany)

- Vertical bifacial PV with various orientations and 2 albedo factors
- References 10° E-W and 30° south
- Sensors: GHI, DHI, T_{amb}

Test site #2: Tucson AZ (USA)

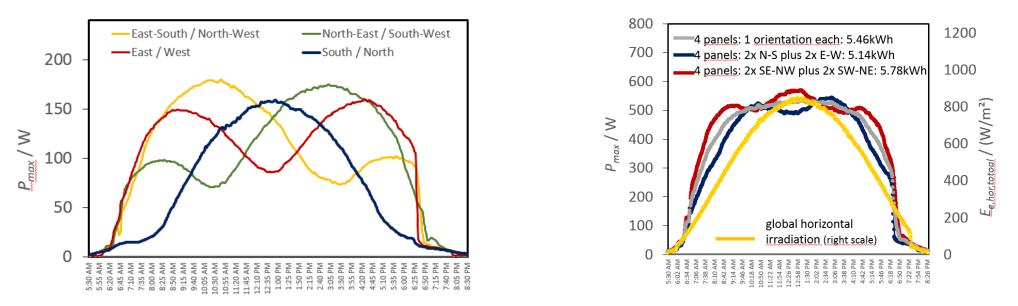
- Vertical bifacial PV with only high ground albedo
- References: 10° in various orientations
- Sensors: GHI, T_{amb}

#1: Global annual yield of vertical bifacial east-west vs. monofacial south

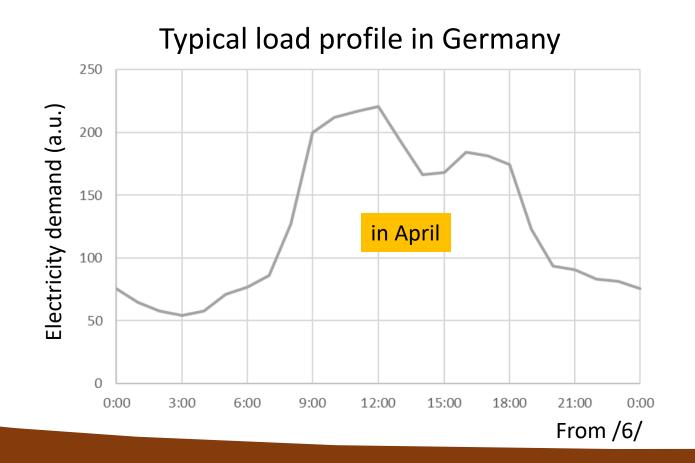

Specific annual energy yield [kWh / kWp]	Technology	bifacial	bifacial	monofacial
	Tilt angle	vertical	vertical	10°
	Albedo	bright	dark	n/a
Tucson (USA); 32.2°N		1,750	-10% -	1,950
Forst (DE); 51.7°N		960 +13%	790 -7%	850

- The relative specific annual yield strongly depends on location (latitude) and albedo
- Bifacial data are for low row spacing (2x module height)

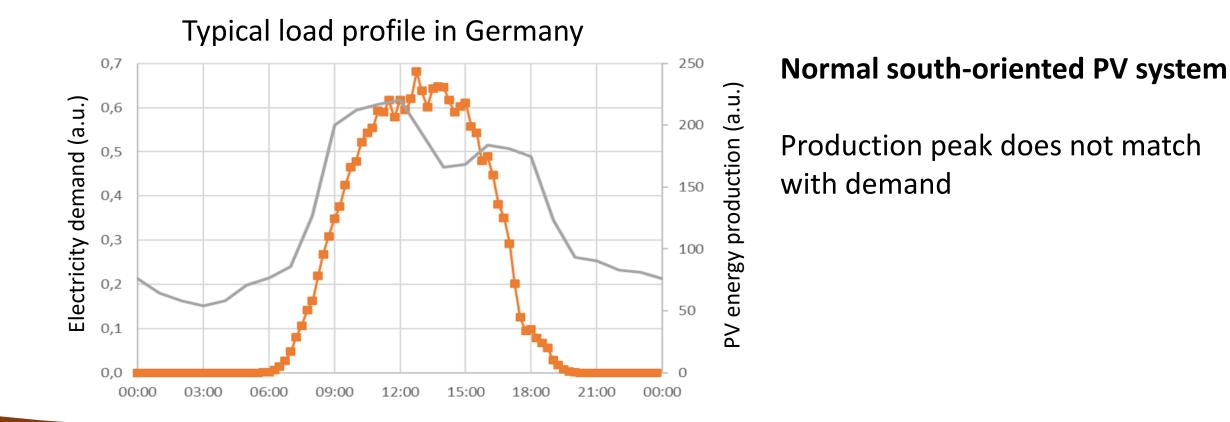
from /3/


World map of where vertical bifacial PV can be beneficial over "normal" PV

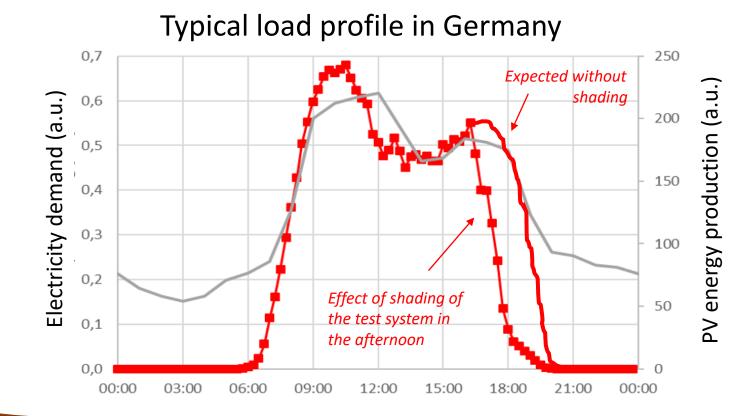
• The relative specific annual yield strongly depends on location (latitude) and albedo


#2: Daily energy production characteristics for different orientations

- The daily energy production curve strongly varies with module orientation
- By combining different orientations a stable energy production during the day can be achieved. From /5/.



#3: Optimization of daily energy production for grid load characteristics



#3: Optimization of daily energy production for grid load characteristics

#3: Optimization of daily energy production for grid load characteristics

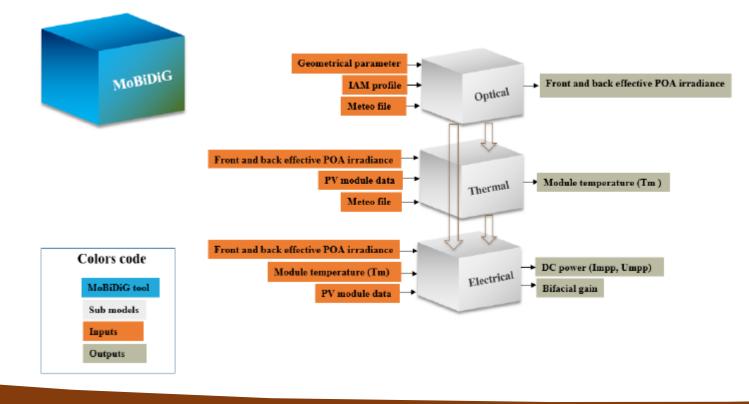
Vertical bifacial PV system (50% NE-SW + 50% E-W)

The energy production curve does match the demand very well

 \rightarrow higher value of PV energy

Simulation

bifiPV Workshop 2022 April 1, 2022

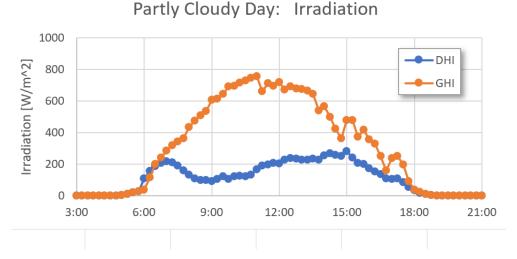

Podlowski et al.: Bifacial Vertical PV System for Flat Roofs

16

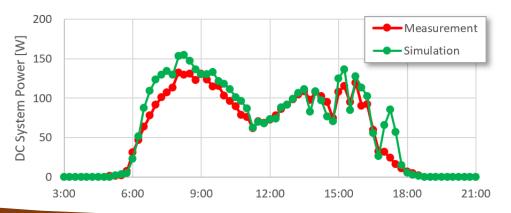
• MoBiDiG¹:

Simulation

Simulations tool of ISC for calculation of energy production of bifacial systems

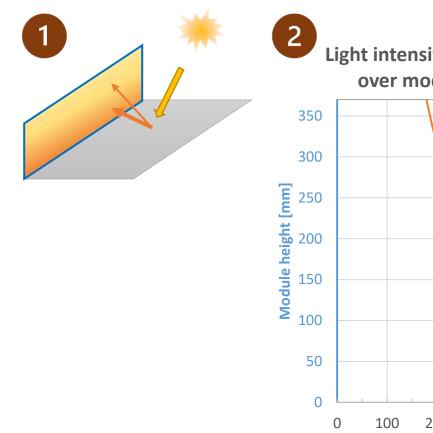

- Got optimized for vertical systems
- Consideration of the selfshading
- applying 3D and 2D viewfactor modelling, as well as ray-tracing

1: <u>Mo</u>deling of <u>Bi</u>facial <u>Di</u>stributed <u>G</u>ain

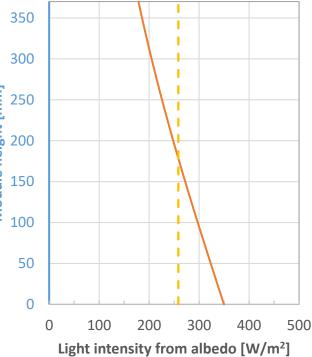


Simulation

Partly Cloudy Day: Measurement & Simulation


- ISC ran a comparison of MoBiDiG prediction with our test site data for 1 year
- As a result MoBiDiG is now able to simulate also vertical bifacial PV systems

-



- (1) The albedo leads to an inhomogeneous light intensity on the module
- (2) Calculation by using "View-Factor"method

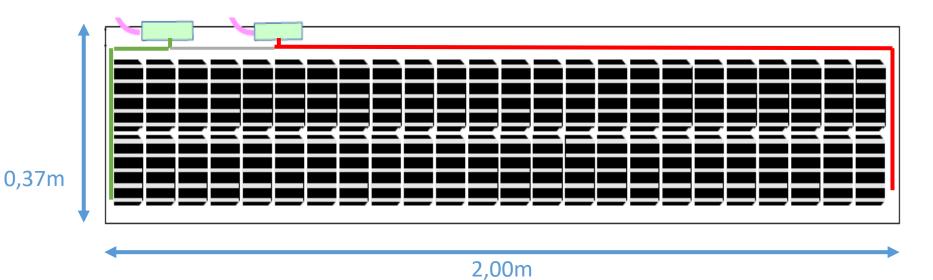


Light intensity from albedo over module height

1

- (1) The albedo leads to an inhomogeneous light intensity on the module
- (2) Calculation by using "View-Factor"method
- (3) The module must be pretty flat in order to minimize the wind load
- (4) The module should be reasonably large in order to minimize manufacturing costs and racking and cabling efforts
- (5) Solar cells must have high bifacial coefficient

2



Resulting module design *)

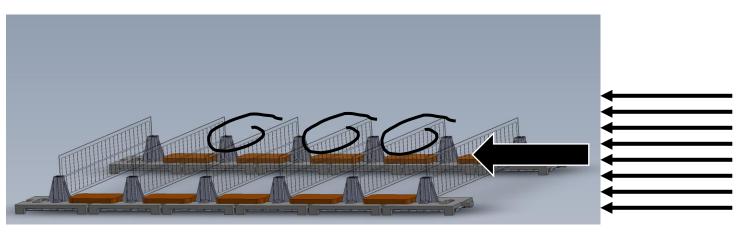
- The module contains just 2 rows of strings. Module height is approx. 40cm
- Both strings contains ½cut cells and are connected in parallel in order to tolerate inhomogenuous irradiation
- Module height:length ratio is 1:5 ... 1:6

*) module design is IP-protected

- Module mounting structure
 - Modules can only be fixed at the outer edges
 - Flat roofs very often only have limited load reserve which can be utilized for the solar systems → system must be light-weight
- Cabling
 - The power per module is fairly low, so many cables per kWp
 - Cables cannot be hidden behind the module (UV; rain; ...)
- Wind load
 - The system is very prone to wind load
- What is the ideal row spacing?
 - More distance between rows means more kWh/kWp but less kWh per roof

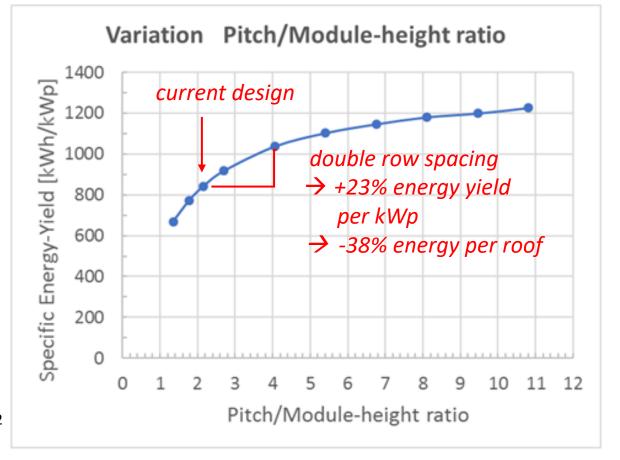
#1: Wind tunnel testing

- We followed the standard procedure which also most manufacturers of "normal" racking systems are using
 - A small-scale modell of the system is tested on various positions on a (small-scale) building



#1: Wind tunnel testing result

- There are pretty strong forces which are pushing towards the front rows of the modules → in case of ballasting heavy weight is required
 → or you have to mechanically fix the systems to the roof
- There are some turbulences behind the front rows
- There are no uplift forces


#2: Row spacing

 The distance between the rows has a strong impact on the annual yield because of self-shading

Simulations data:

- Location: Berlin
- Albedo 60%
- GHI: 900 kWh/m²
- Orientation: E-W

Marketing aspects

- Such vertical bifacial PV rooftop system is very unusual so it needs a lot of explanations
- There is no industry experience with such systems. No external reference can be given. You will not get bank financing for such projects.
- The annual energy production depends on many variables
 - You need tons of field data as a reference
 - You need to configure in detail an energy yield predicton tool
- The cost of the PV module will be higher than for a standard module
- Extensive wind load studies will be required in order to convince statical engineers to sign off for a building permit

After 5 years of work on such system we think that marketing is the real challenge (not so much developing a good technical solution).

Special applications

• Regions with many snow days

- No immediate power loss with snow
- Snow leads to ideal albedo properties

• Green roofs

Best solution for combining PV and green roofs

Summary

- Bifacial vertical PV systems can be very interesting, e.g. in combination with green roofs
- Energy yield per Wp can be very high depending on albedo and row spacing and location on earth. However, the energy yield per area is always less than for a conventional east-west system
- The daily energy production characteristics can be tuned to best meet the daily demand curve → the value of energy may be higher
- The design of the racking system is a real challenge (wind, cabling, ballasting, ...)
- MoBiDiG is now suitable to make good energy yield predictions Next step:
- Get a better understanding of customer acceptance and market potential (project with University of Applied Science HTW Berlin)

Thank you for your attention !

Solyco Technology GmbH

Berlin - Germany

lars.podlowski@solyco.com

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Acknowledgement

The operation of the test sites is a collaboration with PI-Berlin. Parts of this project have been conducted in close collaboration with ISC Konstanz, and the work got supported by the German Ministry of Economy and Energy under the ZIM scheme (*Zentrales Innovationsprogramm Mittelstand*).

bifiPV Workshop 2022 April 1, 2022

References

- /1/ www.next2sun.de
- /2/ https://www.youtube.com/watch?v=5bsAUBVJ_el
- /3/ L. Podlowski et al., 36. PV-Symposium 2021
- /4/ S. Guo et al., <u>https://doi.org/10.1016/j.energy.2013.08.040</u>
- /5/ L. Podlowski et.al., bifiPV Workshop 2018 (Denver, USA)
- /6/ Repräsentative VDW Lastprofile, VDEW, Frankfurt/Main 1999
- /7/ www.reech.ch

