The Energy Gain Provided by 4 and 6-Terminal Bifacial Tandem PV Cells, with a High Efficiency Bifacial Silicon p-PERT Sub-Cell

*Lev KREININ*¹, Asher KARSENTY¹, Naftali EISENBERG¹, Peter TILLMANN², Klaus JAEGER², Christiane BECKER³

¹ Solaround, Jerusalem, Israel

² Zuse Institute Berlin Germany,

³ Helmholtz-Zentrum Berlin for Materialien und Energie, Germany

Presenting Author – Dr. Lev Kreinin

kreinin@sol-around.com

bifi 2022 Workshop April 1st, 2022

SolAround

Presentation Outline

Technological considerations - Introduction

✤ Si sub-cell and bifacial tandem cell design

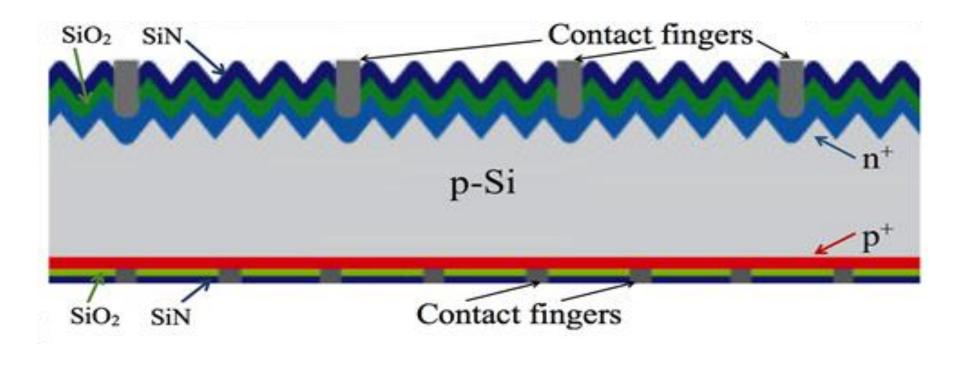
Outdoor experiments as a basis for predictive calculation

Example of the energy gain calculation

Conclusions

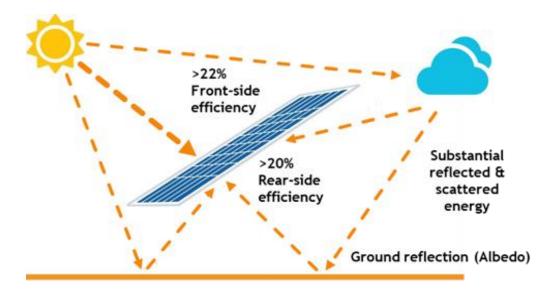
Bifacial Tandem Cell Design -Advantage of 4 Terminal (or 6 Terminal) Over 2 Terminal

- The possibility of implementing a bifacial structure without of the need for balancing the currents of both sub-cells;
- High efficiency of the tandem cell, weakly dependent on the forbidden energy band gap width of the upper sub-cell semiconductor;
- Technological independence of sub-cells fabrication;
- Stability independence of the top and bottom subcells;
- The possibility of independent tests of each subcells

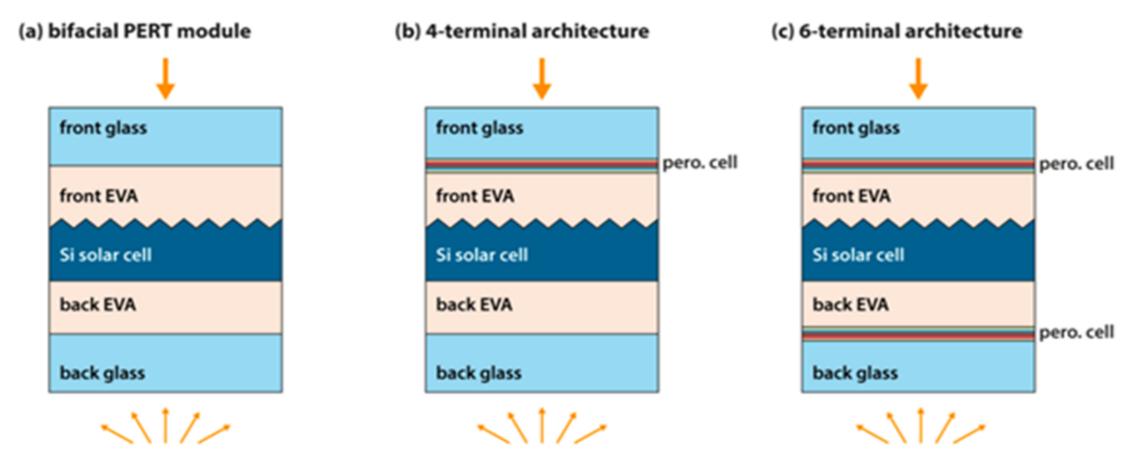

SolAround's Sub-Cell Structure -Highlights

- Use of high carrier lifetime p-type mainstream silicon.
- The cell's structure is a p-PERT, with full boron doped BSF.
- Bulk minority currier lifetime, after boron doping, is kept above 0.5 ms, (depending on starting lifetime)
- ✤ Back Seff is lower than 15 cm/s.
- ✤ Implied Voc is in the range 700 717 mV
- ✤ Bifaciality factor is 90 92%.

SolAround p-PERT - Cell Design


- ✓ Front side is textured;
- ✓ Rear side is chemically flat etched;
- \checkmark Both sides are covered by SiO₂/SiN passivating and AR coating

Operational Advantages of Si p-PERT Bifacial Cell


- Additional 20% to 40% Energy
- Equivalent efficiency: 27% to 31%
- High stability, low aging
- LCOE (Cost of Energy): -10%
 to -25%
- A simple line retrofit
- Higher IRR, Shorter ROI in solar projects
- Highly profitable for **vertical** manufacturers

- Ideal for utility scale ground installations, flat white rooftops, sound barriers, carports, BIPV
- Enhanced yield gain in foggy, cloudy, northern, snow and desert conditions

6

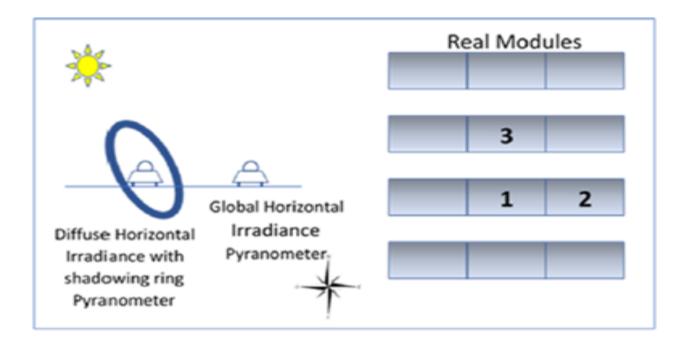
```
Integration of Perovskite Sub-
cells
in 4 or 6 Terminal Tandem Solar
Cells*
```


^{*}K. Jäger et al, "Optical assessment of perovskite-enhanced bifacial silicon solar modules", 36 EUPVSEC Proceedings 2019

PAGE

Experimental Verification of Simulation Model for Bifacial Module Energy Generation Gain

Object of the experimentation:


Comparative analysis of calculated and measured energy gain of bifacial modules over monofacial ones, in solar field conditions:

Method:

- 1. Measure the gain in energy of a bifacial module over a monofacial module, due to the added rear illumination.
- 2. Measure the added rear illumination and correlate with the electrical energy gain.
- 3. Compare and correlate both results with Solaround simulation tool.

The Bifacial Module Test Setup

EXPERIMENTAL "FIELD" LAY OUT

- **1. Continually measured bifacial module**
- 2. Continually measured monofacial module
- 3. Bifacial module for measurements of rear and front irradiance (with 6 detectors)

Rooftop Test Field

Test Conditions:

- Installation type: Flat white rooftop
- **Ground Albedo** ~ 57.5±2.5%
- Test configuration: SolAround's prototype BIFACIAL panel, monitored in parallel to a few surrounding MONOFACIAL panels, in same operating terms
- Test period:

A few days each month since mid. 2019.

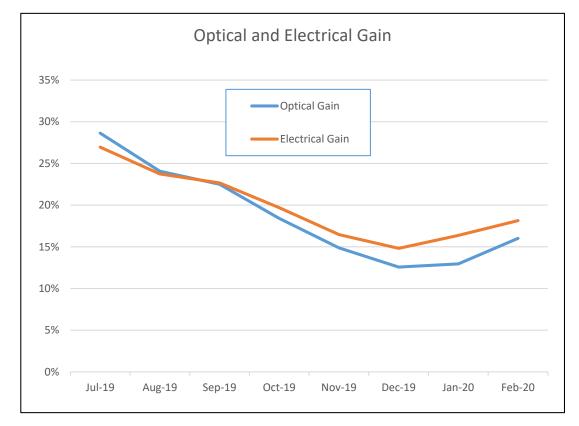
Validation of Simulation Model

• **Optical validation:** correspondence of calculated and experimental front and back irradiance data. Effective cell irradiance is:

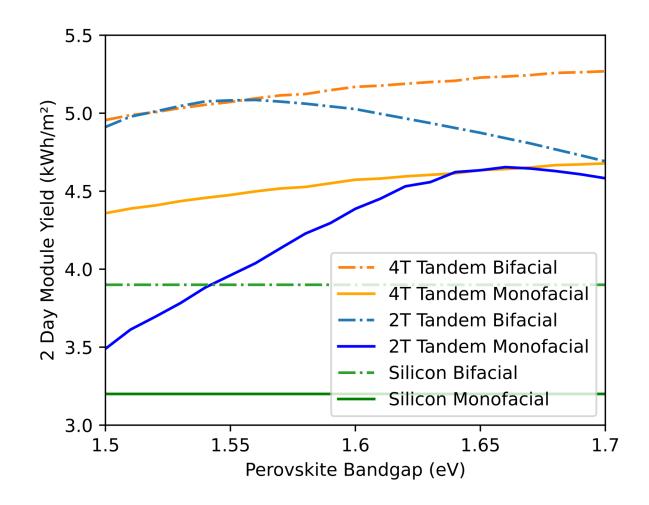
```
Ir (Front) + Ir (Back) * (Bifacialty Factor)
```

• **Electrical validation:** correspondence of calculated and experimental electrical data

where \mathbf{E}_{n} is normalized module energy:

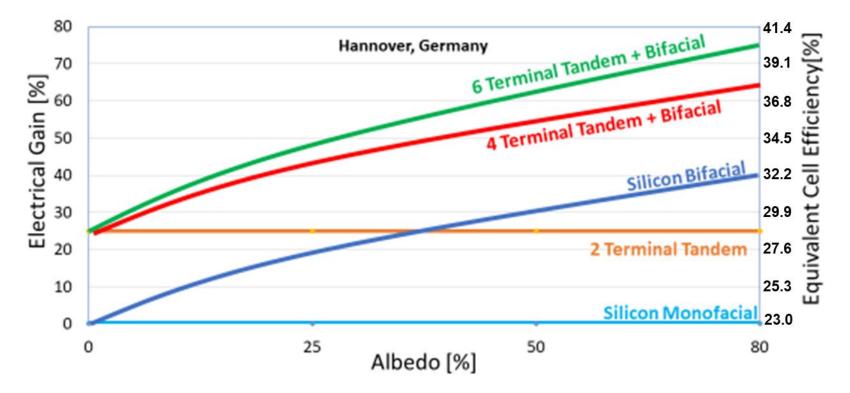

E_n = module generated energy **E**/ Front **P**_{max}, at STC

Experimental Verification of Simulation Model


Irradiance and energy gain values

	Optical	Electrical
month	Gain	Gain
Jul-19	28.6%	27.0%
Aug-19	24.1%	23.7%
Sep-19	22.5%	22.7%
Oct-19	18.4%	19.7%
Nov-19	14.9%	16.5%
Dec-19	12.6%	14.8%
Jan-20	13.0%	16.4%
Feb-20	16.0%	18.1%

Simulation of Two-Day Energy Generation for a Modules of Various Designs (26.08.19 and 15.02.20)



Solar Input Data Used for the Simulation Tool

- Service Servic
- **US NREL database** for US locations.
- **METEONORM** (8,055 Stations worldwide, based on GEBA by World Meteorological Org (WMO/OMM) and the Meteo-Swiss DB).
- **ESRA interpolations** for other locations

Electrical Gain and Equivalent Efficiency of Silicon Perovskite Tandem Bifacial Cell

Summary

- High efficiency bifacial Si p-PERT cell is a candidate sub-cell for the silicon/perovskite tandem cell
- Careful outdoor experiments provide optical and electrical validation of the bifacial gain simulation model
- Combination of bifacial sensitivity and tandem design allows to maximize solar cell energy generation
- Strongly varying rear illumination does not allow for the best use the bifaciality factor in the 2-terminal tandem cell
- According to simulation, 4-terminal bifacial tandem cell can achieve the equivalent efficiency of ~37% comparing to 32% for bifacial Si cell with front efficiency 23%.
- Simulation for 6-terminal bifacial tandem cell results in equivalent efficiency ~39%

Contact Us

Israel Headquarters

Lev Academic Center, 21 HaVaad Haleumi St., Jerusalem 9372115 Israel

SolAround

Germany, R&D Lab

Rudolf-Diesel-Straße 15, D-78467 Konstanz, Germany

Office: +49 (0) 7531-36183-0,

Fax: +49 (0) 7531-36183-

CEO, Avishai Drori

avishai.drori@solaround.com

Mobile: +972 54 5900053

Chief Scientist, Dr. Lev Kreinin

kreinin@sol-around.com Mobile: +972 50-563-7753

PAGE 17